Targeted inhibition of activin receptor-like kinase 5 signaling attenuates cardiac dysfunction following myocardial infarction.
نویسندگان
چکیده
Following myocardial infarction (MI), the heart undergoes a pathological process known as remodeling, which in many instances results in cardiac dysfunction and ultimately heart failure and death. Transforming growth factor-beta (TGF-beta) is a key mediator in the pathogenesis of cardiac remodeling following MI. We thus aimed to inhibit TGF-beta signaling using a novel orally active TGF-beta type I receptor [activin receptor-like kinase 5 (ALK5)] inhibitor (GW788388) to attenuate left ventricular remodeling and cardiac dysfunction in a rat model of MI. Sprague-Dawley rats underwent left anterior descending coronary artery ligation to induce experimental MI and then were randomized to receive GW788388 at a dosage of 50 mg.kg(-1).day(-1) or vehicle 1 wk after surgery. After 4 wk of treatment, echocardiography was performed before the rats were euthanized. Animals that received left anterior descending coronary artery ligation demonstrated systolic dysfunction, Smad2 activation, myofibroblasts accumulation, collagen deposition, and myocyte hypertrophy (all P < 0.05). Treatment with GW788388 significantly attenuated systolic dysfunction in the MI animals, together with the attenuation of the activated (phosphorylated) Smad2 (P < 0.01), alpha-smooth muscle actin (P < 0.001), and collagen I (P < 0.05) in the noninfarct zone of MI rats. Cardiomyocyte hypertrophy in MI hearts was also attenuated by ALK5 inhibition (P < 0.05). In brief, treatment with a novel TGF-beta type I receptor inhibitor, GW788388, significantly reduced TGF-beta activity, leading to the attenuation of systolic dysfunction and left ventricular remodeling in an experimental rat model of MI.
منابع مشابه
Transforming growth factor β and its role in heart disease
Myocardial infarction (MI) is a major form of heart disease that leads to immediate cardiomyocyte death due to ischemia and eventually fibrosis and scar formation and further dysfunction of myocardium and heart failure. Extracellular matrix (ECM) production and tissue repair is conducted by myofibroblasts, which are formed from the normal quiescent cardiac fibroblasts following transformational...
متن کاملActivin A inhibition attenuates sympathetic neural remodeling following myocardial infarction in rats
Inflammation serves a critical role in driving sympathetic neural remodeling following myocardial infarction (MI), and activin A has been implicated as an important mediator of the inflammatory response post‑MI. However, whether activin A impacts sympathetic neural remodeling post‑MI remains unclear. In the present study, the authors assessed the effects of activin A on sympathetic neural remod...
متن کاملSphingosine 1-phosphate signaling contributes to cardiac inflammation, dysfunction, and remodeling following myocardial infarction.
Sphingosine 1-phosphate (S1P) mediates multiple pathophysiological effects in the cardiovascular system. However, the role of S1P signaling in pathological cardiac remodeling following myocardial infarction (MI) remains controversial. In this study, we found that cardiac S1P greatly increased post-MI, accompanied with a significant upregulation of cardiac sphingosine kinase-1 (SphK1) and S1P re...
متن کاملCathepsin B inhibition attenuates cardiac dysfunction and remodeling following myocardial infarction by inhibiting the NLRP3 pathway
An interested reader drew to our attention the fact that Figs. 4 and 5 in the above-mentioned article had already been published as Figs. 4 and 5 in the following paper [Boyle AJ, Kelly DJ, Zhang Y, Cox AJ, Gow RM, Way K, Itescu S, Krum H and Gilbert RE: Inhibition of protein kinase C reduces left ventricular fibrosis and dysfunction following myocardial infarction. J Mol Cell Cardiol 39: 213-...
متن کاملThe Angiotensin-Receptor Neprilysin Inhibitor LCZ696 Attenuates Cardiac Remodeling and Dysfunction After Myocardial Infarction by Reducing Cardiac Fibrosis and Hypertrophy von Lueder et al: ARNi Attenuates Cardiac Fibrosis and Hypertrophy
Background—Angiotensin-receptor neprilysin inhibitors (ARNi), beyond blocking angiotensin II (AngII)-signalling, augment natriuretic peptides by inhibiting their breakdown by neprilysin (NEP). The myocardial effects of ARNi have been little studied until recently. We hypothesized that LCZ696 attenuates left ventricular (LV) remodeling after experimental myocardial infarction (MI), and that this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 298 5 شماره
صفحات -
تاریخ انتشار 2010